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A stochastic model of the revised Enskog equation is considered. A choice of
the smearing function suggested by the work of Leegwater (1) is used to apply the
model to the repulsive part of the Lennard-Jones potential and the inverse-
power soft-sphere potential. The virial coefficients obtained from the equilib-
rium properties of the models are in excellent agreement with the known exact
coefficients for these models. The transport coefficients for the repulsive
Lennard-Jones (RLP) model are also computed and appear to be of comparable
accuracy to the Enskog-theory coefficients applied directly to a hard-sphere
system, although exact results for the RLP with which to make an extensive
comparison are not yet available. The pressure and the transport coefficients
obtained from the model (shear viscosity, thermal conductivity, and self-diffu-
sion) are compared with the pressure and the corresponding transport coeffi-
cients predicted by the Enskog and square-well kinetic theories.

KEY WORDS: Kinetic theory of gases; Enskog theory; hard spheres systems;
Lennard-Jones potential; transport coefficients.

1. INTRODUCTION

One of the important goals of any kinetic theory is its capability to
compute transport coefficients of a fluid. The kinetic theory based on the
Boltzmann equation, valid in the regime of close-to-zero densities (dilute-
gas regime), produces the transport coefficients of an ideal fluid. For
moderately dense, hard-sphere gases, the kinetic theory based on the



standard or revised Enskog equations (2–4) describes, on the hydrodynamical
level, a non-ideal fluid with transport coefficients having a nonvanishing
bulk viscosity. In order to account for more realistic potentials (other than
hard-core potentials) several extensions of the revised Enskog equation
have been proposed. Since smooth potentials can be approximated by a
sequence of step functions, the square-well potential fSW can be considered
as the lowest-order approximation of this type. For E > 0, 0 < a < R, and

fSW(r)=˛
., for r [ a,

− E, for a < r < R,

0 for r \ R.

(1)

the authors in refs. 5–10 have developed new models of kinetic theories.
Recent ones are based on the maximization of the fine-grained entropy,
subject to appropriate constraints, which yields what has come to be called
kinetic variational theory (KVT). Use of a set of increasingly stringent
constraints which are a subset of the exact constraints in the problem seem
to provide increasingly accurate quantitative assessments of transport
coefficients and related macroscopic quantities. In particular, the version
that is based upon a local energy-density constraint (called by the authors
KVTIII, because it is generated by the third in the sequence of constraints
mentioned above) has been investigated in detail and the transport coeffi-
cients obtained from the KVTIII are in good agreement with experimental
data and computer simulation results for moderately dense fluids.

Although this progress has been encouraging, there have been no fully
satisfactory extensions of these theories to more realistic pair potentials
that have soft rather than hard cores and smoothly varying attractive tails
with no discontinuities. Karkheck et al. (11) applied KVTIII to a truncated
Lennard-Jones (LJ) potential to obtain formal KVTIII expressions for the
full LJ limit, in which the point of truncation goes to infinity, but the tem-
poral approach to equilibrium in KVTIII has certain pathological features
in this limit. Although the KVTIII transport coefficients themselves are
robust and generally useful for a moderately dense LJ fluid, the KVTIII
does a relatively poor job in capturing the quantitative behavior of the dif-
fusion coefficient as a function of temperature. Subsequently, Leegwater (1)

considered a new approach to obtaining the self-diffusion coefficient of an
LJ system from Enskog-theory expressions into which a weighing factor
W(r) is introduced to accommodate the soft LJ potential. The resulting
expression has the form (Eq. (3.16) in ref. 1)

D=
3
8n

1
(>.0 W(r) y(r) dr)

1kBT
pm
21/2, (2)
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where y(r)=exp[bfLJ(r)] gLJ2 (r) is the cavity function, fLJ is the Lennard-
Jones potential,

fLJ(r)=4E 51d
r
212−1d

r
266 , (3)

gLJ2 (r) is the equilibrium radial correlation function of the Lennard-Jones
system, and W(r) is a certain weighting function that was obtained by
solving approximately the two-particle equations of motion. Because the
LJ y(r) is very well approximated by a hard-sphere y(r) for a suitably
chosen hard-sphere diameter, one can simply use a hard-sphere y(r) in (2).
Leegwater’s idea was to generalize the expression for the Enskog value of
the self-diffusion coefficient,

DEnskog=
3
8n

1
a2gHS2 (a

+)
1kBT
pm
21/2, (4)

(here gHS2 (a
+) is the contact value of hard-spheres’ radial correlation func-

tion) to continuous potentials, by an ad hoc insertion into (4) the factor
gLJ2 , weighted by the function W(r). Furthermore, since Leegwater’s W(r)
satisfies the normalization condition

F
.

0

W(r)
r2
dr=1, (5)

the approximation (2) reduces to (4) in the hard-sphere limit.
In this work we provide new arguments for validity of the approxi-

mate formula (2) for the self-diffusion coefficient. In addition, we derive
the corresponding formulas for other transport coefficients not considered
by Leegwater. We start by introducing a class of the kinetic equations that
have built into their structure the weighting function W(a). Then, by
linearizing the equation around absolute equilibrium, we derive the for-
mulas for the transport coefficients. The resulting expressions yield formula
(2) for the self-diffusion coefficient (with y(r) taken to be the hard-sphere
y(r)) and corresponding formulas for shear viscosity and thermal conduc-
tivity. Finally, we provide numerical comparison of the pressure and the
transport coefficients obtained from our model with the corresponding
values of pressure and transport coefficients obtained from the Enskog and
square-well kinetic theories.

2. THE KINETIC EQUATION

We start with the revised Enskog equation and perturb it by smearing
effects in the collisional processes. This is done by introducing varying
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diameters of hard spheres. Particles’ diameters vary according to a certain
(possibly time dependent) probability density P(t, a) that may also depend
on the velocity moments (i.e., macroscopic quantities like density, velocity,
and temperature) of the one-particle distribution function f(t, x, v). The
kinetic equation has the form:

“f
“t
+v
“f
“x
=Estoch(f) — E

+
stoch(f)−E

−
stoch(f), (6)

with

E+stoch(f)= FFF
[a1, a2]×R

3×S2+

f(t, x, vŒ) f(t, x−aE, wŒ) a2P(t, a)

×g2(x, x−a+E | n(t, · ))OE, v−wP dE dw da, (7)

E−stoch(f)= FFF
[a1, a2]×R

3×S2+

f(t, x, v) f(t, x+aE, w) a2P(t, a)

×g2(x, x+a+E | n(t, · ))OE, v−wP dE dw da. (8)

Here, O · , ·P is the inner product in R3, E ¥ S2+={E ¥ R3 : |E|=1, OE, v−wP
\ 0}, h is the angle between E and v−w (i.e., |v−w| cos h=OE, v−wP),
0 [ a1 < a2, and

vŒ=v− EOE, v−wP, wŒ=w+EOE, v−wP. (9)

Furthermore, g2 is the pair correlation function of the hard-sphere
system at non-uniform equilibrium, with the local density n(t, r). The
notation g2(x1, x2 | n(t, · )) indicates that g2 is a functional of n. The form
of g2(x1, x2 | n(t, · )) is given by the following Mayer cluster expansion:

g2(x1, x2 | n)

=exp(−bfHS(|x1−x2 |))

×31+F V(12 | 3) n(t, x3) dx3+
1
2
FF V(12 | 34) n(t, x3) n(t, x4) dx3 dx4

+·· ·+
1

(k−2)!
F dx3 · · ·F dxk n(3) · · · n(k) V(12 | 3 · · · k)+· · · 4 , (10)

where n(k)=n(t, xk), b=1/kBT, V(12 | 3 · · · k) is the sum of all graphs
of k labeled points which are biconnected when the Mayer factor fij=
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exp(−bfHS(|xi−xj |))−1 is added. Here, fHS is the hard-sphere potential

fHS(r)=˛+., if r [ s;

0, if r > s,
(11)

Remark 1. In this work, we assume that the series in (10) is
pointwise convergent, at least for small densities n. It is known that in the
homogeneous case (n=const), the series in (10) is convergent for suffi-
ciently small densities n (see, for example, ref. 16).

The function P appearing in (7) and (8) is a nonnegative probability
density, which introduces a smearing-type effect in the collision process.
Collisions are smeared in the domain (determined by the interval [a1, a2],
with a1 > 0) around the points of impact. In the case P(t, a)=d(a−s) for
all t and s ¥ [a1, a2], with s > 0, Eq. (2) reduces to the revised Enskog
equation for hard spheres with the diameter s.

Similar models to (6) had been known for the Boltzmann equation. (12)

From the mathematical point of view, the authors in ref. 13 (see also refer-
ences in ref. 14 utilized similar smearing-type effects and were able to pass
to the Euler level from a stochastic BBGKY-hierarchy equations, while the
authors in ref. 15 proved the convergence to absolute equilibrium for the
stochastic (Povzner-like) Boltzmann equation.

Equation (6) introduces an additional integration into the collisional
operator Estoch given by (7) and (8). Combined with the two-dimensional
integration with respect to OE, v−wP, the integration with respect to a in
formulas (7) and (8) amounts to a three-dimensional integration in the
spatial variable x of the distribution function f. This fact had played an
important role in proving various existence theorems for the corresponding
equations (see, for example, refs. 12–15). While theoretical advantages of
the above model are important and had been considered in the just quoted
reference, in this work we will be concerned with providing examples of
viable prescriptions for the weight function P(t, a).

Equation (6) exhibits several properties that are analogous to the cor-
responding properties of the revised Enskog equation. First, for k measur-
able on W×R3 and f ¥ C0(W×R3), we have

FF
W×R3

k(x, v) Estoch(f) dv dx

=1
2 F · · ·F
W×R3×[a1, a2]×R

3×S2+

[k(x, vŒ)+k(x+aE, wŒ)−k(x, v)−k(x+aE, w)]

×f(t, x, v) f(t, x+aE, w) a2P(t, a)

×g2(x, x+a+E | n(t, · ))OE, v−wP dE dw da dv dx, (12)
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where C0(W×R3) is the space of continuous functions with compact
support in W×R3. For k=1, k=v, and k=v2, the left hand side of iden-
tity (12) is identically zero; this property corresponds to conservation of the
mass, momentum, and energy. W … R3 denotes a spatial domain, which
(for simplifications only) is either equal to R3 or R3/Z3, a 3-dimensional
torus. The latter choice corresponds to periodic boundary conditions on
[0, L]3 and some L > 0.

Another important property of the model (6)–(8) is existence of a
Liapunov functional. As in ref. 17 one shows that, for nonnegative solu-
tions f of Eq. (6), Cstoch(t) defined by

Cstoch(t)=Hideal(f)(t)+Hcorr(f)(t)

= FF
W×R3

f(t, x, v) log f(t, x, v) dv dx−F
t

0
I(s) ds (13)

with

I(t)=1
2 F · · ·F
W×R3×[a1, a2]×R

3×S2+

[f(t, x, vŒ) f(t, x+aE, wŒ)−f(t, x, v) f(t, x+aE, w)]

×a2P(t, a) g2(x, x+aE | n(t, · ))OE, v−wP dE dw da dv dx, (14)

has the property

dCstoch
dt

[ 0. (15)

The equality in (15) holds if and only if

f(t, r, v)=n(t, r)(b(t) m/2p)3/2 exp (−b(t) m(v−u(t))2/2), (16)

where u(t) is fluid velocity and b(t)=1/kBT(t) with T(t) fluid kinetic
temperature. We observe that the form of f in (16) is identical to the one in
the revised Enskog equation and, in addition, it is independent of the func-
tion P(t, a) in the definition (13) and (14) of the functional Cstoch(t). At the
same time, as we will show in the next section, the relation between
macroscopic n and T (the equation of state), as well as the expressions for
transport coefficients do depend on choices of P(t, a).

As in the case of the revised Enskog equation, one can express the
correlation part of the Liapunov functional, Hcorr(f)(t), in terms of the
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Mayer diagrams. Indeed, using very similar arguments as in ref. 18, we
obtain

Theorem 1. For each nonnegative P(t, a), the kinetic model (6)–(8)
has an H-function

Hstoch(t)= FF
W×R3

f(t, x, v) log f(t, x, v) dv dx

− C
.

k=2

1
k!

F
a2

a1

P(t, a) da F
W

dx1 · · · dxk n(1) · · · n(k) Va(1 · · · k)

+F
t

0
C
.

k=2

1
k!

F
a2

a1

“P(s, a)
“s

F
W

dx1 · · · dxk n(1) · · · n(k) Va(1 · · · k) da ds,
(17)

with Va(1 · · · k) the sum of all irreducible Mayer graphs that doubly connect
k particles with the (fictitious) diameter a.

We observe that when P(a)=d(a−s), with 0 < s ¥ (a1, a2), Hstoch(t)
reduces itself to the H-function for the revised Enskog equation.

Remark 2. In the case when P depends also on the macroscopic
quantities n, u, and/or T (moments of f ), expression (17) for Hstoch is no
longer true; however, a generalized form of (13) and (14) still holds. This
topic will be pursued in our forthcoming paper.

3. THE TRANSPORT COEFFICIENTS AND THE EQUATION

OF STATE

In this section we provide explicit formulas for the transport coeffi-
cients and equation of state that correspond to the fluid which is described
on the kinetic level by Eqs. (6)–(8). One of the important and characteristic
features of our model is the fact that the transport coefficients as well as
the equation of state can be computed explicitly in terms of the function
P(a).

As it is well known, there is no advantage in treating the original
(nonlinear) equation as far as the computation of transport coefficients is
concerned. What is, in fact, needed is the linearization of Eqs. (6)–(8)
around the absolute equilibrium, nw, with

w=(2pkBT/m)−3/2 exp 1 − mv
2

2kBT
2 , (18)
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and some perturbation calculus applied to the corresponding eigenvalue
problem.

The linearized (around absolute Maxwellian (18)) collision operator is
the functional derivative, DnwEstoch(nw), evaluated at nw, which acts as an
operator on a given function h(x, v). When one carefully defines Estoch to be
a map between some Banach spaces X and Y, then DnwEstoch(nw) becomes
the Fréchet derivative of Estoch at f=nw and acts as a bounded linear
operator from X into Y. For the purpose of evaluating transport coeffi-
cients alone we limit ourselves to formal expression of DnwEstoch. Below,
g2(n, a+) denotes the contact value (i.e., for x1, x2 with |x1−x2 |=a+) of
g2(x1, x2 | n( · )) corresponding to a homogeneous (i.e., constant) density n.
Also, for each h(x, v), nh(x) — >R3 h(x, v) dv. We have

DnwEstochh=C1h+C2h, (19)

with

C1h=n FFF
[a1, a2]×R

3×S2+

[h(x, vŒ) w(wŒ)+w(vŒ) h(x−aE, wŒ)

−h(x, v) w(w)−w(v) h(x+aE, w)]

×a2P(a) g2(n, a+)OE, v−wP dE dw da, (20)

and

C2h=n2 FFF
[a1, a2]×R

3×S2+

[Dn g2(x, x−aE | n( · )) nh−Dn g2(x, x+aE | n( · )) nh]

×w(v) w(w) a2P(a) g2(n, a+)OE, v−wP dE dw da, (21)

where Dn g2(x, x±aE | n( · )) nh are the functional (Fréchet) derivatives,
evaluated at n, and acting on nh. The first two terms of Dn g2(x,
x±aE | n( · )) nh are as follows:

Dn g2(x1, x2 | n( · )) nh=G12 3F
W

V(12 | 3) nh(3) dx3

+
n
2
FF
W×W
V(12 | 34)[nh(3)+nh(4)] dx3 dx4+·· · 4 ,

(22)

where G12=G(|x1−x2 |−a) with G, the Heaviside function.
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Next, we perform the Fourier transformation of DnwEstochh (denoted by
Ltht ), with ht(v)=> exp(−iOt, xP) h(x, v) dx, i=`−1, and t=(t1, 0, 0).
Due to the fact that we are interested in the hydrodynamics modes, we
keep only the terms up to the order |t|2 in the Taylor expansion in |t| of the
function Ltht. The result is

Ltht=LBht+it1L (1)ht−(t1)2 L (2)ht+O(|t1 |3), (23)

where

LBht=n FFF
[a1, a2]×R

3×S2+

[ht(vŒ) w(wŒ)+w(vŒ) ht(wŒ)−ht(v) w(w)−w(v) ht(w)]

×a2P(a) g2(n, a+)OE, v−wP dE dw da, (24)

L (1)ht=n FF
[a1, a2]×R

3×S2+

[ht(wŒ) w(vŒ)+w(wŒ) ht(vŒ)]

× E1a3P(a) g2(n, a+)OE, v−wP dE dw da

+n2 1F
R
3
ht(v1) dv1 2 FFF

[a1, a2]×R
3×S2+

w(v) w(w) E1a3P(a)

×
“g2(n, a+)
“n

OE, v−wP dE dw da, (25)

and

L (2)ht=
n
2

FFF
[a1, a2]×R

3×S2+

[ht(wŒ) w(vŒ)−w(v) ht(w)]

×a4P(a) g2(n, a+) E1OE, v−wP dE dw da. (26)

Here, E=(E1, E2, E3) and “g2(n, a
+)

“n is equal to the right hand side of (22)
evaluated at contact value (i.e., for |x1−x2 |=a+) and with nh — 1.

Now, as in the case of the Enskog equation (see, ref. 4, pp. 165–167),
in order to compute transport coefficients we consider the following eigen-
value problem

[LB+it1(L (1)−v1)−(t1)2 L (2)] f=lf, (27)
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where v=(v1, v2, v3) Using perturbation analysis up to the second order
in t1, we obtain for the shear viscosity,

gstoch=−nm lim
yQ 0+

Of3 | (L(1)−v1)(LB−y)−1 (L(1)−v1) |f3P+nmOf3 | L(2) |f3P,
(28)

and for the heat conductivity

o stoch=−nmCp lim
yQ 0+

O(−f1+(3/2)1/2 f5)|

×(L (1)−v1)(LB− y)−1 (L(1)−v1) |(−f1+(3/2)1/2 f5)P

+nmO(−f1+(3/2)1/2 f5)| L (2) |(−f1+(3/2)1/2 f5)P, (29)

where Og | hP=>R3 g*(v) h(v) w−1(v) dv, with * denoting the complex con-
jugate, Cp is the specific heat, and fi, for i=1, 2, 3, 4, 5, are the normalized
eigenfunctions corresponding to the eigenvalue l=0 of LB:

f1=w (30a)

fi=
vi

`kBT/m
w, (i=2, 3, 4), (30b)

f5==
2
3
1 mv2
2kBT

−
3
2
2 w. (30c)

It is important to observe that the operator LB is precisely the linear-
ized Boltzmann operator with the scattering kernel B(h, |v−w|) given by

B(h, |v−w|)=1F a2
a1

a2P(a) g2(n, a+) da2OE, v−wP. (31)

In the cases when the operators L (1) and L (2) approach zero (in a suitable
sense), formulas (28) and (29) reduce to the corresponding transport coef-
ficients given by the kinetic theory based on the Boltzmann equation with
the scattering kernel B(h, |v−w|) given in (31). This is, for example, the
case for P(a)=d(a−s), and after one takes the dilute-gas limit, i.e., when
ns3Q 0.

Finally, using computations similar to those in the case of the Enskog
equation (e.g., ref. 4, pp. 166–167), we obtain from (28) and (29)

g stoch=11+25n F
a2

a1

bE(a) P(a) g2(n, a+) da2
2

gB+35 z
stoch, (32)
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for the shear viscosity, and

o stoch=11+35n F
a2

a1

bE(a) P(a) g2(n, a+) da2
2

oB+Cvz stoch, (33)

for the heat conductivity, where z stoch is analogous to the bulk viscosity
given by

z stoch=
n2`mkBT

p3/2
F
a2

a1

(bE(a))2

a2
P(a) g2(n, a+) da, (34)

with bE(a)=2pa3/3 and Cv equal to the specific heat. The coefficients gB

and oB are equal to the hard-sphere Boltzmann shear viscosity and heat
conductivity. They are given by

gB= lim
yQ 0+

Of3 | v1(LB−y)−1 v1 |f3P, (35)

and

oB=2
5 lim
yQ 0+

O(−f1+(
3
2)
1/2 f5)| v1(LB− y)−1 v1 |(−f1+(

3
2)
1/2 f5)P, (36)

where LB (given in (24)) is the hard-sphere linearized Boltzmann operator,
with the diameter s equal to

s=1F a2
a1

a2P(a) g2(n, a+) da2
1/2

. (37)

We observe again that when P(a)=d(a−s), with s > 0, expressions (32)
and (33) reduce to the Enskog equation formulas for the shear viscosity
and the heat conductivity, respectively.

In analogous way, by considering instead, the consequent Boltzmann–
Lorentz equation one obtains that the corresponding self-diffusion coeffi-
cients is given by

D stoch=
3
8n

1
(>a2a1 a

2P(a) g2(n, a+) da)
1kBT
pm
21/2. (38)

The similarity between (38) and Leegwater’s formula (2) for self-diffusion
coefficient is remarkable. In contrast to the heuristic approach of Leegwa-
ter, our formulas for the self-diffusion, as well as for the shear viscosity and
thermal conductivity transport coefficients, are derived from the kinetic
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model (6) that has built-in conservation laws and trend to equilibrium. It is
at this stage that we make a connection between Leegwater’s formula (2)
and our model through the following identification:

a2P(a) ’W(a). (39)

We observe that this identification is consistent with the normalization
condition for P, in our model,

F
a2

a1

P(a) da=1, (40)

and Leegwater’s normalization condition (5). Normalization (40) guaran-
tees that our model reduces to the revised Enskog equation in the hard-
sphere limit, while the normalization (5) guarantees that approximation (2)
satisfies the desired (Enskog) hard-sphere limit.

What Leegwater’s approach provides us is a sensible physical argu-
ment for a particular choice of P(a), through W(r), based upon two-par-
ticle dynamics associated with a particular soft potential, such as the RLJ
or inverse-power potential, defined in (41). However, we note that we can
not apply our stochastic-model approach directly to the full LJ potential,
because our P(a) is a probability , which must be nonnegative, whereas
Leegwater’s W(a) (and hence the associated P(a), via (39)) is not a non-
negative function. This is because the LJ potential takes negative as well
as positive values. Actually, Leegwater’s derivation is more legitimately
applicable to repulsive potentials in the first place, because of its neglect of
bound states in considering two-particle dynamics in the presence of a fluid
of like particles.

We consider two types of potentials: (1) the repulsive part of the LJ
potential (RLJ) and (2) the inverse-power potential (sometimes referred
to as the point centers of repulsion-soft spheres potential or soft-sphere
potential)

(1) f r(r)=˛4E 51dr 2
12

−1d
r
266+E, for r [ 2

1
6d;

0, for r > 2
1
6d,

(2) f s=c 1d
r
2m, m \ 6.

(41)

The potential f r(r) is always nonnegative and f r(21/6d)=0. Furthermore,
it is well known that for c=1, f sQ fHS, as nQ., where fHS is the hard-
sphere potential (11) with the diameter d.
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In order for us to treat the full LJ potential using our stochastic-model
technique, we must use as a starting point the KVTIII expressions for the
square-well potential and introduce into them a P1(a) to describe a distri-
bution of hard-core diameters and a separate P2(a) to describe a distribu-
tion of square-well diameters, with P2(a) tailored to describe the shape of
the LJ attractive bowl.

We end this section by providing an explicit formula for the equation
of state of the fluid underlying the stochastic kinetic model (6)–(8). Arguing
similarly as in the case of the Enskog equation (see again, ref. 4) one
obtains

p
nkBT

=1+n F
a2

a1

bE(a) P(a) g2(n, a+) da, (42)

where bE(a)=2pa3/3 and g2(n, a+) is the radial correlation function (at
uniform equilibrium) for the system of hard spheres with diameter a. As
before, when P(a)=d(a−s), Eq. (42) reduces to the equation of state for
hard-sphere system with diameter s:

p
nkBT

=1+12ps
3

3
2 ng2(n, s+). (43)

4. NUMERICAL COMPUTATIONS AND COMPARISONS OF

PRESSURE AND TRANSPORT COEFFICIENTS

4.1. Comparisons of the Virial Coefficients

For the potential (1) in (41) the natural choices for the range of inte-
gration with respect to a in expressions (7) and (8) are a1=0 and
a2=21/6d. We start with the virial expansion of g2(n, a+):

g2(n, a+)=1+1
2pa3

3
2 5
8
n+12pa

3

3
22 b4n2+1

2pa3

3
23 b5n3+1

2pa3

3
24 b6n4+·· ·,

(44)

where bk are the reduced virial coefficients for the hard-sphere system given
by

B1=1, B2=
2pa3

3
, b2=1, b3=

B3
B22
=
5
8
, (45)
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b4=
B4

12pa3
3
23
=89/280+(219`2/2240p)+(4131/2240p) cos−1(1/`3)

% 0.28695 (46)

b5=
B5

12pa3
3
24

% 0.1102, b6=
B6

12pa3
3
25

% 0.0386,..., (47)

while Bk are the virial coefficients appearing in the hard-sphere equation of
state:

p
nkBT

=1+C
.

k=1
Bk+1nk. (48)

In terms of the (standard) reduced variables for the distance r*=r/d,
density n*=nd3, and the temperature T*=kBT/E, the equation of state
(42) has the form

p
nkBT

=1+12pd
3

3
21F 2

1
6

0
r3P(r) dr2 n+12pd

3

3
22 5
8
1F 2

1
6

0
r6P(r) dr2 n2

z z
v2 v3

+12pd
3

3
23 b4 1F

2
1
6

0
r9P(r) dr2 n3
z

v4

+12pd
3

3
24 b5 1F

2
1
6

0
r12P(r) dr2 n4
z

v5

+12pd
3

3
25 b6 1F

2
1
6

0
r15P(r) dr2 n5+·· · , (49)

z
v6

where, for simplicity of notation, we continue denoting the reduced dis-
tance r* by r and the density n* by n. Our normalized P(r) is taken from ref. 1
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Fig. 1. Graphs of P(r) for b=0.1,0.2,...,2.4,2.5. The leftmost graph corresponds to b=0.1
and the rightmost graph corresponds to b=2.5.

(Eqs. (3.17) and (3.18)). It corresponds to the repulsive part of the Lennard-
Jones potential:

P(r)=
d
dr [exp(−bf r(r)] Z(bf r(r))

>2
1/6

0 { ddr [exp(−bf r(r)] Z(bf r(r))} dr
, (50)

where

Z(bf r)(r)=
bf r(r)
4

exp 1bf
r(r)
2
25K1 1

bf r(r)
2
2+K0 1

bf r(r)
2
26 ,

(0 < r [ 21/6) (51)

The functions K0(r) and K1(r) are the modified Bessel functions of order 0
and 1, respectively, and b is the inverse of reduced temperature. Equation
(51) is derived by Leegwater from a consideration of two-particle dynamics
using approximations that facilitate analytic representation. (See Fig. 1.)

Next, we compare the reduced virial coefficients Bg
k for a system with

the potential with f r (see (41)) with the virial coefficients given by our
model in (49):

Bg
2 ’ v2, Bg

3 ’
5
8 v3, Bg

4 ’ b4v4, Bg
5 ’ b5v5,... (52)

Due to space limitation we provide below only comparisons of the second
reduced virial coefficient Bg

2 , given by
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Bg
2 (b)=F

2(1/6)

0
[1− exp (−bf r)] d(r3),

(Here, r3 is the variable of integration.) (53)

with our v2 (see (49)).
For the potential f s (see (41)) with c=1 and m=12, we compared the

second (19) and third virial (20) coefficients of the system described by this
potential with our v2 and b3v3. Using only numerical computations (with
a1=0 and a2=.), we found that

Bg
2

v2
=1.11284 and

Bg
3

b3v3
=0.993476 (54)

for all b. Furthermore, since the asymptotic behavior of the kth virial
coefficient of the system described by the potential f s (with c=1) is given
by (b)3(k−1)/m (see, refs. 21 and 22), we checked numerically that the
following relations are true

vk(b, m) bk=A(m, k) B
g
k (b, m) for all b > 0,

all k=2, 3, 4,..., and m=6, 9, 12, 15, 18. (55)

In (55), A(m, k) > 0 is a computable function of m and k. In other words,
the kinetic equation (6) with P given by (50), where f r is replaced by f s,
correctly predicts temperature dependence of the system governed by the
potential f s in its equation of state. (See Table I and Fig. 2.)

Table I. Comparisons of v2 (see (49)) with B g
2 (see (53)) for Different b=1/T* in the

Case of the Potential f r. The Largest Difference Between v2 and B g
2 Is <8%. In the

Range of b Between 0.25 and 2, the Difference Is <4%

b=0.25 b=0.5 b=0.75 b=1 b=1.25 b=1.5 b=1.75 b=2

v2 0.857847 0.952418 1.00511 1.04069 1.06708 1.0878 1.1047 1.11886
Bg
2 0.879458 0.958876 1.00058 1.02722 1.04589 1.05971 1.07032 1.07866

b=2.25 b=2.5 b=2.75 b=3 b=3.25 b=3.5 b=3.75 b=4

v2 1.13098 1.14154 1.15084 1.15913 1.16659 1.17335 1.17953 1.18519
Bg
2 1.08536 1.09082 1.09532 1.09907 1.10222 1.10488 1.10714 1.10908
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Fig. 2. Graphs of v2 (dashed curve) and Bg
2 as functions of T* in the case of the potential f r.

4.2. Comparisons of the Pressure

The expression for pressure (42) requires integration of the contact
value g2(n, a+) multiplied by bE(a) P(a) with respect to a. For numerical
computations we considered two approximations of the hard-sphere
g2(n, a+):

g2(n, a+) % 1+C
8

k=1

12pna3
3
2k bk+2 (56)

and

gCS2 (n, a
+) %

3
2pna3
51+p6 na3+p

2

36 n
2a6− p3

216n
3a9

(1− p6 na
3)3

−16 . (57)

The approximation in (56) is motivated by the fact that we know the hard-
sphere reduced virial coefficient up to b10. On the other hand, the expres-
sion in (57), is the well known Carnahan–Starling approximation (23) that is
accurate over large values of the density n. For pressure comparisons, we
consider only potential f r in the definition of P(r).

Below, we present the graphs of the ratio of p/pE as functions n*, for
the reduced temperatures T*=0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5,
where pE is the hard-sphere pressure given in (43), for both approximations
of g2(n, a+) in (56) and (57).

Overall, as expected, there are no significant differences in pressure
except in the high-density region, where n*=na3 % 0.9−1.2.

Note. The top graphs in Figs. 3 and 4 correspond to T*=0.5. The
lowest graphs in Figs. 3 and 4 correspond to T*=2.50.
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Fig. 3. The ratio p/pE as a function of n*=nd3 for g2 given by (56).

4.3. Comparisons of the Transport Coefficients

As in the case of the pressure, we consider only potential f r in the
definition of P(r). We compared the ratios g stoch/gE, o stoch/oE, and
D stoch/DE as functions of the reduced density n*, for various reduced tem-
peratures T*=0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, and 2.5. Here gE, oE,
and DE are the shear viscosity, the thermal conductivity, and the self-diffu-
sion coefficients predicted by the (revised) Enskog equation.

Notes.

(1) The top graphs in Figs. 5 and 6 correspond to T*=0.5. The
lowest graphs in Figs. 5 and 6 correspond to T*=2.50.

0.2 0.4 0.6 0.8 1 1.2
n*

0.5

1

1.5

2

2.5

3

3.5

4
p\pE

Fig. 4. The ratio p/pE as a function of n*=nd3 for g2 given by (57).
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Fig. 5. The ratio g stoch/gE as a function of n*=nd3 for g2 given by (57).

(2) The top graphs in Figs. 7 and 8 correspond to T*=2.5. The
lowest graphs in the Figs. 7 and 8 correspond to T*=0.5.

Finally, Table II provides absolute values of the g stoch, o stoch, and D stoch

for various densities n*=nd3 with d=3.405×10−10 m, mass=39.95 au,
and various reduced temperatures T*=kBT/E in Lennard-Jones units and
E/kB=119.8 K. Our results are given for the approximation of g2(n, a+) in
(56) and for the Carnahan–Starling approximation (57) (with the (CS)
marking).

4.4. Concluding Remarks

We are proposing the use of our stochastic modeling to extend the
revised Enskog theory and the KVTIII in a new way to apply to softened

0.2 0.4 0.6 0.8 1 1.2
n*

2

4

6

8

10

12

14

kappa* \kappaE*

Fig. 6. The ratio o stoch/oE as a function of n*=nd3 for g2 given by (57).
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Fig. 7. The ratio D stoch*/Dg
E as a function of n*=nd3 and T* for g2 given by (56).

continuous potentials, such as the RLJ and LJ potentials. We clearly
cannot expect the results to be any better for such potentials than the
underlying RET or KVTIII results for hard-sphere and square-well poten-
tials. In particular, we cannot hope to capture backflow and caging effects
that are important at liquid-state densities, but are left out of the RET and
KVTIII. To capture these effects, we propose tagging a particle and assign-
ing an effective diameter and reduced mass in its interaction with other
particles according to the prescriptions developed by Sung and Stell. (24)

Unlike Sung and Stell, however, we intend to use those prescriptions in the
context of the KVTIII, with our stochastic modeling enabling us to extend
our results to soft-core continuous potentials.
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1.75
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D* \DE*

Fig. 8. The ratio D stoch*/Dg
E as a function of n*=nd3 and T3 for g2 given by (57).
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Table II. Comparison of the Transport Coefficients from Our Model and Experi-

ments. Numbers in the Brackets, in the Fourth Column of the Table, Are the Refer-

ences from the Work of Karkheck, Stell, and Xu(11) that Indicate the Sources of the

Corresponding Experimental or Computer Simulation Data

Simulation (S)
State Transport coefficient Our values Experiment (E)

Liquid (triple point) 3.75
2.62–2.89 (S) [12–17]

g (in Pa · s×10−4) 2.71 (E) [18, 19]
n*=0.844, T*=0.73 3.81 (CS)

2.76 (E) [20]

Liquid (triple point) 198
127 (S) [21, 22]

o (in mJ · K−1 · m−1 · s−1) 134 (S) [17]
n*=0.844, T*=0.73 202 (CS)

133 (E) (± 4%) [23]

Liquid
D (in cm2 · s−1×10−5)

1.89
2.30 (S) [24]

n*=0.818, T*=0.761 1.83 (CS)

Liquid
o (in mJ · K−1 ·m−1 · s−1

114 94 (S) (± 5%) [21]
n*=0.715, T*=0.94 114.5 (CS) 90 (E) (± 4%) [23]

Supercritical
g (in Pa · s×10−4)

0.228
0.226 (E) [23]

n*=0.20, T*=1.60 0.228 (CS)

Dense hot supercritical 4.66
4.85 (S) [13]

g (in Pa · s×10−4) 5.78 (S) [14]
n*=1.040, T*=2.51 4.89 (CS)

4.80 (E) [25]

Dense hot supercritical
D (in cm2 · s−1×10−5)

3.55
3.10 (S) [24]

n*=1.074, T*=2.502 3.11 (CS)
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